Supporting text

Birth death processes on a mutation network. Let us consider a birth
death process with mutations. There are n types of mutations, with rates
Uy, ..., Uy,. Bach mutation event corresponding to rate u; leads to a phenotype
resistant to drug i. To develop resistance to all n drugs, a cell must accumu-
late » mutations. Simple combinatorics suggests that there can be m = 2" — 1
different phenotypes, resistant to one or more drugs. In particular, there are

Z phenotypes resistant to k < n drugs. Fig. 1 illustrates the mutation
network for n = 3.

Each phenotype can be labeled by a binary number where “1” indicates resis-
tance to the drug corresponding to its position and “0” indicates susceptibility
(Fig. 1). In particular, type A™ is resistant to all n drugs and corresponds
to the binary label s = m = 11...1 (repeated n times). We can set up a
birth death process on this mutation network. Each phenotype A® with some
0 < s < m, has arrows coming in and out, see Fig. 5. We assume that in time
interval At, the following events can occur with each phenotype A®, 0 < s < m:

e With probability Ls(1->; uj’om)At a cell of type A® reproduces, creating
an identical copy of itself;

s,out

y a cell of type A re-
produces with a mutation, creating a cell of type Aj nezt for all j;

e For each outgoing arrow, with probability Lsu

e With probability (Ds + Hy)At, a cell of type A® dies.

Note that we neglect the probability of double (simultaneous) mutations.

We start with My cells of type A° and follow the process until the first cell
of type A™ has been created. We would like to calculate the probability, P, (t),
that at least one cell of type A™ exists at time ¢t. Here, the subscript n refers
to the number of drugs used.

Let us introduce the function ;... ;,. , the probability to have ¢, cells of type
A% where 0 < s < m are binary numbers. We can write down the Kolmogorov
forward equation,

£=> QA% 1]

where Q{A*} is the contribution from all events leading to the state (ig, ..., i),

Q{A*} = € i,1.(is—1)Ls 1—ZU;’OM +isLs Zg.“is...ijfl...uj’out
J J

+ gzg+1(ls+1)(Ds+Hs) _gzs(Ls"_Ds"_Hs) [2]
We used the following shorthand notations: & stands for &;,.. . ;. , and the
only explicit subscripts indicate the indices that are different from (ig, ..., im).
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Figure 5: One vortex of a mutation diagram.

In Eq. 2, the first term is faithful reproduction, the second term is all possible
mutations, the third term is death, and the last term comes from the probability
of no change.

Probability generating function. It is convenient to define the probability
generating function, U(xg,...,Tm;t),

U(zg,...,Tm;t) =
i

m
Z §i0,...,im H‘T?a [3]
im s=0
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where 5 denotes the binary number obtained from s by interchanging 0’s and
1’s. Note that ¥(0,1,...,1;¢) has the meaning of the probability that at time
t, no cells of type A™ have been created. Then

Py(t) =1-0(0,1,...,1;t).

S
equation for the generating function:

Let us multiply Eq. 1 by ngo z¥ and sum over all indices to obtain the

ov ov 2 s,out
5 = ;axg 22L, y;uj + D, + H,
+ wsLe Y ajul® — (L + Do+ Hy)zg . 4]
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Note that the variables with the index § appear with the coefficients correspond-
ing to type s, see also Fig. 1. The partial differential equation above can be
solved by the method of characteristics. If we introduce the following shorthand

notation,
s out
uSout — Zu?ou ,
J

then the equations for characteristics are:

s = Ly (1 — us"’“t) 22+ |L, Zu;’out:ﬁ; —(Ls+ Ds + Hy) | x5

J



+ Ds+H,, 0<s<m, (5]

and we have
Po(t)=1- xm(t)MD7 [6]

where the function z,,(t) is the solution of system 5 corresponding to the initial
conditions
zj(0)=1, 1<j<mn, x(0)=0. (7]

Two-phase computer simulations. To investigate the dynamics of resis-
tance generation, we performed computer simulations of Eqgs. 5. In the absence
of treatment, the parameter H,; was set to zero. In the presence of treatment,
we switched on a nonzero value of H, which we took to be the same for all
susceptible and partially susceptible phenotypes, and zero for the fully resistant
phenotype. Note that system 5 simplifies significantly if we assume that all
growth rates, death rates, and mutation rates are the same.

The probability of treatment failure under treatment with n drugs, P, is
given by lim; . P,(t). Let us suppose that treatment starts at time ¢ = t,.
To find the probability of treatment failure numerically, we first need to solve
system 5 under the treatment conditions (that is, with nonzero values of H),
with initial conditions given by Eqs. 7. We run the simulations until the values
for x(t) plateau. Then these limiting values are used as initial conditions for
Egs. 5 with pretreatment coefficients (H = 0). This simulation is performed
for the length of time t,. The resulting value for x,, is used to evaluate the
probability of treatment failure.

The goal of the simulations is to find the probability of treatment failure
starting from a tumor of a certain size, N. However, in the framework designed
in the previous section, we cannot deterministically control the size of tumor. At
time t,, the size of the tumor is a random quantity with the mean Mye(E—P)t-
and variance 2 ~ %GQ(L*D)“, where M, is the initial number of cells.

The uncertainty in size comes mostly from the early stages of growth where
stochastic effects play an important role. Therefore, if we start the simulations

from a sufficiently large number of cells (more precisely, My > ,/%),

then with a high probability, the size of tumor at time ¢t = ¢, will be close to
MoeF=P)t+ | Let us suppose that we are interested in determining the size of
the tumor for which the probability of treatment failure is § < 1. Then the
error coming from the uncertainty in colony size can be estimated,

. L+ D log & 2
szze—4(L_D) MO .

Another source of error is the process of mutation. By starting the simulation
from My > 1 wild type cells, we assume that no mutants have been generated
in the first My divisions. This leads to the error of the order

UMQ
Emut = T



As we can see, increasing M, decreases e ;,., but it increases e€,,,;. There is
an optimal number, Mj, which minimizes the total error. In general, large
mutation rates (u > 10~*) and low values of § (§ < 1073) cannot be handled
by the method, because they lead to an error of > 10% even for D = 0.

Analytical results. In several special cases, analytical solutions for system
5 are possible. In particular, one can handle the case where we look at the
treatment phase only. Let us start from My nonmutant cells (no preexistence).
We will make the following symmetry assumption: all the mutation, growth and
death rates corresponding to different types are the same. Then we have the
following equations:

i9g = La}—(L+ D)xo+ D, 8]
i = L —idu)a?+ (iLluz; 1 — (L+ D+ H))x; +(D+ H), 1<i<n, [9]
where P;(t) = 1 — [z;(t)]™°. The initial conditions are

.23():1‘1':0.

We can calculate the limiting behavior as time goes to infinity. We have, under
the assumption that v < (L — D), that

D

fmwo = T o
, - iNL— D)L 'ui

If the total number of drugs used is n, then the probability of treatment failure
is
n!(L — D)Lty

(D+H-L)»

Now, let us include the pretreatment phase and allow for generation of mu-
tants before treatment starts. As described above, we first need to find the
limiting values of x; under the treatment conditions, which are given by formu-
las 10 and 11. Then we use these as the initial conditions for the pretreatment
equations, in the interval 0 < t < t,, where ¢, is the time when treatment starts.
The quantities [x;(t.)]*° are the probabilities of treatment success with therapy
starting at time t.. We have,

T = Mo
P =1-z,°~

9 = Lax2—(L+D)xo+ D, [12]
& = L —iu)a?+ (iluz;_1 — (L+ D))x; + D, >0, [13]

and the initial conditions from 10— and 11. The equation for zy can be
solved exactly to give



The equation for z; is a Riccatti equation,

(L - D)u

‘We can find the exact solution and then take the limit © — 0 to obtain
an approximate formula for 1,

1 He'=Dr 14
L ‘(W‘)“- [14]

Setting e(L~P)t = Nt#;‘“, and neglecting 1 compared with this quantity,

we find
HNtreatU

(H+D—-1L)
If therapy is very strong such that H > L — D, we can see that treat-

ment success does not depend on D.
We can find the size N corresponding to the probability of treat-

Pl ~ [15]

ment failure, § < 1, from xiwo =1-4, or
1(H+D-1L)
N=_- T~
u H ’

that is, the log size is a linear function of |logu| with slope n = 1.

Next, we examine the case of two drugs. We will make the ap-
proximation of a doubly stochastic process, whereby generation of
one-hit mutants and their lineages is independent identically dis-
tributed stochastic processes. We will assume that the total pop-
ulation size changes according to the deterministic exponential law,
N(t) = MyeL=P)t Using the notion of filtered Poisson processes, we
have,

t
Pt =1 ea:p{—ZLu/ NE)(A =2t - t’)>dt’}a
0

where LuN(t')dt’ is the probability to create a one-hit mutant in the
time interval (¢,t + dt), and 1 — z;(t — t') is the probability that the
lineage resulting from that mutant will give rise to the production
of a double mutant in the time from the creation of the lineage, t/,
to the current time, t. The factor 2 in the exponent comes from the
two possibilities of acquiring two hits. The function x; is given in
formula 14. The integral can be evaluated exactly, and then u can be
neglected compared with 1. Note that quantity Nu is not assumed to
be small. We obtain

prot _ 2N (M, HILu AT
2 T T-D 8 IN T(D+H-L)(L-D) N)’

this should be compared with formula 15 for the case of one drug.



